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A reduced form of phenomenological laws involving a single (resulting) driving force is proposed that makes 
it possible to describe superposition effects by a smaller number of kinetic parameters. 

In his attempts to formulate laws of transfer of heat, matter, charge, etc. in the most general form including 

the description of effects of superposition (interrelationship) of irreversible processes of different types, Onsager 

postulated that the generalized rate of a process (flow Ji) is linear with all thermodynamic forces Xj acting in the 
system [1 ]: 

n 

L jxj. (1) 
y;l  

Here L/y are constant phenomenological coefficients forming, provided that the forces X i and Xj belong to one and 
the same type of time functions (even or odd), a symmetric matrix 

Liy = Lji. (2) 

For more than half a century this postulate was undisputable and was reproduced in all handbooks on 

thermodynamics of irreverible processes making an only proviso concerning the Curie symmetry principle stating 

that superposition is possible only for processes of one and the same (or even) tensor rank and form [2, 3 ]. In 

doing this, the question on the interrelationship of process rates found, according to [ 1 1, as time derivatives of 

independent parameters of the system state* has not even been raised. Nobody has ever been embarassed by the 

fact that this postulate contradicted centures-old foundations of mechanics according to which a single (resulting) 

force corresponds to every independent process (translation, acceleration, establishment of equilibrium, etc.) that 

terminates when the force vanishes. This was also supported by equations of anisotropic heat transfer or electric 

conductivity which served, according to Onsager's own confession, as prototypes of his phenomenological laws. 

In order to demonstrate that Onsager's theory is not free from internal contradictions, we present laws (1) 
in the form 

n rt 

Ji = E Z i jX j  = E J i j '  (3) 
y=l j=t 

where Jq = LijX ] are components of the flow Ji reflecting superposition effects. 

In this case, interrelationship of flows can emerge only as a result of additional bounds imposed that cannot be 
postulated a priori. 
In this case, Xj (j -- 1, 2, 3) are components of a single force - the vector of the negative temperature gradient - 
VT or electric field strength E. 
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Since, according to ( I ) ,  Lij = (OJi/dXj)xi in l inear systems,  and  Xj = (JJLyj)xi = o, simultaneous 
consideration of these relationships shows that a certain relationship exists at Xi = 0 between diagonal L/j and 

off-diagonal coefficients Lij: 

Lij = Ljj (OJi/aJJ)xi= o . (4) 

It follows from this that, if the flows Ji and Jj  are not interrelated, e.g., their variations are independent, 

coefficients Lij become zero along with the derivatives (OJi/OJJ)xi=o when Xi = 0. This means that the reciprocity 

relationships are trivially satisfied: Lij = Lji -- 0, as expected. In other words, in the absence of the driving force X i 
corresponding to the flow Ji, no other force can induce this flow if the latter is indeed independent. 

There are also other  grounds to doubt the adequateness of Onsager 's  postulate. According to Eq. (1), 

numerous thermomechanica l ,  thermoelectr ical ,  thermodiffusional ,  and o ther  effects are explained by an 

interrelationship between the rates of irreversible processes taking place within the same space regions, i.e., by 

superposition of the flows Ji and Jj [2, 3 ] and their mutual entrainment [4 ]. At the same time, it is well known 

that the effects mentioned reach their maxima in so-called stationary states in which nonfixed flows vanish and 

therefore cannot superimpose with other flows. For example, in electrolyte solutions, in which electrical conductivity 

and diffusion phenomena take place, the difference of electric potentials (the Kwincke effect) is maximum when 

the current is turned off [3 ]. The same takes place in the case of the Soret effect consisting of the appearance of 

a concentration gradient of the k-th substance in an originally homogeneous medium when a temperature gradient 

is maintained in this medium, and the specified concentration gradient reaches its maximum when diffusion flows 

vanish [3]. Therefore, the reason for the emergence of these superposition effects should be sought not in the 

interaction of flows but ra ther  in addition of different forces, as this takes place in mechanics. 

This means that, in the absence of additional bonds imposed, Onsager 's  postulate should be replaced by 

a proposition according to which the generalized rate of an irreversible process (the f low Ji) depends only on the 
components Xij of a single (resulting) force Xi = Ej Xij. This proposition corresponds to kinetic equations of the 

following form: 

rt  

Ji ": Lit (Xi) Xi = Lit (gi) ~ gi] '  (S) 
j=l 

where Lii(g i) are kinetic coefficients that, in contrast to those from (1), can be arbitrary functions of thermostatic 

parameters (temperature T, pressure p, concentrations of k-th substances, etc.) and of forces Xi. The basic 

distinction of Eqs. (5), except for their nonlinearity, consists in the fact that each of the equations includes the 

only kinetic coefficient L i i ( X i ) ,  whereas components Xij of the force Xi are determined solely by thermodynamic 

properties of the system. 

The possibility of t ransforming phenomenological  laws (1) into the diagonal form (with a single 

thermodynamic force) does not contradict the thermodynamics of irreversible processes, according to which the 

necessary and sufficient condition of doing this would be linearity of the laws and symmetry of the matrix of 

phenomenological coefficients in their notation [2, 3 ]. However, this procedure carried out in the thermodynamics 

of irreversible processes by a linear transformation of flows and forces has no advantages, since it does not reduce 

the number of indepedent phenomenological coefficients in original equations (1) and does not remove constraints 

inherent in the linear thermodynamics of irreversible processes. It would be quite another matter if we would find 

a possibility to immediately find an alternative form (5) of the Fourier, Ohm, Darey, Fick, Newton, and other laws 

that would contain a generalized driving force and would allow description of the same superposition effects 

employing a smaller number  of kinetic coefficients without resorting to the assumption that they are constant. In 

Onsager's theory and in the existing thermodynamics of irreversible processes [2, 3 ], finding this force is hardly 

possible by construction of these theories. For example, it is well known that the magnetic component of the Lorentz 

force F L responsible for thermogalvanomagnetic effects is normal to the direction of the electric current and 

therefore does not contribute to the entropy production a s [2, 3 ]. Therefore,  the formalism of Onsager's theory, 

defining forces as derivatives of a s over the corresponding variables of state, is inapplicable in this case. This also 
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concerns graviational, centrifugal, and Coriolis forces responsible for reversible effects. Further,  the formalism of 

these theories does not fully take into account the conditions of  uniqueness of the particular processes under  

investigation. Thus,  when writing entropy balance equations for finding flows and driving forces of different 

processes, the thermodynamics of irreversible processes invariably uses one and the same Gibbs relationship in its 

classical form 

K 

du = Tds - pdv + ~ Pk dCk , (6) 
k=l  

which assumes the specific entropy s and the specific volume v of the system to be independent  variables 

(coordinates of heat transfer and bulk deformation processes). At the same time, the use of the chemical potential 

flk =- (Ou/OCk)s,v under conditions different from s, v -- const (e.g., in the presence of diffusion when s and v 

necessarily change as a result of changes in the system's composition) leads to the fact that the forces V/~ k, 

Vp~/T ,  A~k, and A l t k / T  found based on (6) do not include the transfer heat and therefore are insufficient for 

describing thermal  diffusion and thermal  osmosis without involving other  forces, despi te  temperature a n d  

concentration gradients for all independent components necessary for this entry in V/~ k. By virtue of this, the 

assumption on the existence of a single driving force of an independent process could not emerge in the framework 

of thermodynamics of irreversible processes. 

At the same time, one can easily assure oneself of the existence of resultant thermodynamic forces: it 

suffices to put the Gibbs relationship (6) in correspondence with the uniqueness conditions for each particular 

process. The first step on this way is removing the presently existing arbitrary approach to definitions of the concept 

of heat in open systems [2, 3 ], which would allow characterization of the heat transfer, work, energy, and mass 

t ransfer  as independent  processes inducing special phenomenologically  distinct changes in the system state 

irreducible to other types of changes. This requirement is satisfied by the presently accepted definition of the heat 

Q and work W as a portion of the heat transfer not related to the matter transfer cross the system boundary [5 ]. 

In accordance with this, to find the elementary heat 6Q and work 8W in open systems, one should subtract from 

the total change of their entropy dS and volume dV the portions of the former Z ~ k d n  k and Z ~ k d n  k due to the 

transport of k-th components across systems boundaries, where under ~k one means the entropy de facto introduced 

into the system by a mole of  the k-th substance, i.e., the quantity called in the literature (following Agard [3 ]) 

"transported entropy," and under ~k one means the volume de facto introduced into the system by a mole of the 

k-th substance: 

K K 

r TdS  - ~ -Sk dnk ; c~W= p d V -  ~ -Vk dnk , (7) 
k = l  k = l  

K K 

~q = Tds  -- E -Sk dCk ; c)w = pdv - ~_~ -Vk dCk , (S) 
k = l  k = l  

where c k is the molar fraction of the k-th component, and n k is the number of moles of the component. 

By taking into account that s = ~,kSkCk , upon adding and subtracting the term YkTSkdCk from the right-hand 

side of Eq. (7), these equations can be written as follows: 

K K K 

c~q= T d s -  ~ - S k d C k =  ~ T c k d S k - - ~  T ( 'Sk--sk) dCk' 
k = l  k= l  k = l  

(9) 

K K K 

c~w = pdv - ~ Pvk dCk = ~ PCk dVk -- ~'. P ('Vk -- Vk) dCk " 
k = l  k= l  k = l  

0o) 
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The difference between the molar entropy ~t of the transferred substance and the actual increase in the entropy 

of the mixture s t upon introducing a mole of this substance at constant temperature and pressure,* entering the 

second term of expression (9), characterizes thermal effects accompanying introducing the k-th substance. These 

effects were first considered already within the framework of the pseudothermostatic theory by Eastman (1926) 

and Wagner (1929) who referred to the difference "Sk -- s t  as the entropy of transfer Sk, and called the corresponding 

quantity 

qk = T ('gt - s t )  = T s t  (11) 

the heat of transfer of a mole of the k-th substance. According to Eastman and Wagner, qk is the heat that must 

be supplied to a system from the environment (or removed from the system) to maintain its temperature at a 

constant value upon introducing a mole of the k-th substance into the system. This treatment of the heat of transfer 

is close to its classical understanding. The thermodynamics of irreversible processes introduces the quantity qt as 

one of the empirical coefficients Liy that, owing to the reciprocity relationships (2), acquires the meaning of the 

energy transported by the flow of the k-th substance in the absence of a temperature gradient [2, 3 ]. In both cases, 

the heat of transfer appears to be inextricably entwined with the mass transfer,  so that the former should be 

excluded from the definition of the process heat in its classical definition. This is realized in Eq. (9), which thus 

provides a unique definition of the process heat in open systems. In a similar manner,  in Eq. (10) the expansion 

work in open systems is determined by the change in volumes of components  minus volume effects w* -- 

P ~ k -  Vk) = PVk due to introducing k-th substances. The above definition of the heat and work changes the 

expression for the energy and mass transfer defined as a residual term in the equation for the energy balance in 

open systems. Naturally, this residual term appears to be different depending on conditions under which the process 

takes place. Thus, for diffusion under conditions of a constant volume (V, v = const) in the absence of heat transfer 

in its classical meaning (3Q, 6q = 0), substitution of expressions (9) and (10) into the Gibbs relationship (6) 

transforms it into the form 

K 
du = 6q - 6w  + ~,  g, dk dck , (12) 

k=l  

where ~pd =/~t + T~t - P~t is the potential of the k-th component which we earlier called the diffusional potential 

[6 ] due to the fact that the above uniqueness conditions are characteristic of the diffusion process. The  fact that 

the heat of transfer, excluded from the heat transfer expression, entered into the other part of the equation of the 

energy balance (the expression for the energy and mass transfer) is quite reasonable, since the energy balance 

should be satisfied in this case. Thus, under conditions of diffusion aggravated by thermal and bulk effects, the 

chemical potential transforms into the diffusional potential. 

Now we consider the process of osmosis of the k-th component to a closed space (V = const) in the absence 

of heat transfer(6Q = 0). In this case, the Gibbs relationship is as follows: 

K 
du = 6q - f w  + ~,  ~0 ~ t d c k ,  (13) 

k=l  

where g,~s __/~t + T~t is the potential of the k-th component, which we earlier called the osmotic potential [6 ]. By 

using the well-known relationship/~k = hk -- TSk' one can easily show that the osmotic potential of the component 

equals the sum of its partial enthalpy h k and the heat of transfer qk of this component 

This quantity, as is well known, can also be negative (as opposed to Sk). 
Other definitions of this quantity can be found in the literature. Thus, Haase [3 ] uses the term "entropy of 
transfer" for ~k. We adhere to the most widely used definition of the entropy of transfer, implying that this quantity 
is defined as s~ = q'k~ T. 
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:# W~ = h~ + r (s  k - sk) = hk + q k -  ( 1 4 )  

Since the potential of the component is determined exclusively by the thermodynamic state of the system, 

qk and w k should be treated as new thermodynamic variables. Their magnitudes and signs depend on the differences 

-gk - st  and -ilk - vk, i.e., on thermodynamic properties of the region from which (into which) the k-th component 
is introduced. This corresponds to the existing experimental data [2, 3 ].* 

One can easily notice that for noninteracting components (gk = sk and hk-- hk), the osmotic potential acquires 

the sense of the partial molar enthalpy of the transferred component h k, and in the more special case of a single- 
component system it has the sense of its molar enthalpy h. Thus, the potential of the component changes not only 

as a result of a more precise definition of the concept of the heat transfer and the work of expansion in open systems, 
but also depending on thermodynamic properties of a particular system. 

Owing to including the heat and work of transfer into the expression for the potential of the components, 

the generalized diffusion equation has the following form [7 ]: 

Jk = - LkkVw d = -- Lkk ~ /XklVCl + s*kVT - vkVp , (15) 
1=2 

where i.tkl is the shorthand notation of the derivative Obtk/OCl. The resulting vector force Xk -- -V~0~ includes 

K + 1 components, each of which has one and the same tensor rank, i.e., a for t ior i  satisfies the Curie principle. 

One of these, Xkd = -Zk/aklACl is responsible for the conventional (concentrational) diffusion, anothher one, Xkt 

= -s*kVT, is responsible for thermal diffusion, and another one, Xkb = v*kVp, is responsible for barodiffusion and 

sedimentation. In the particular case of isobaric-isothermic diffusion (Vp, VT=0), Eq. (15) assumes the form of the 

generalized Fick diffusion law [8 ]: 

K 

Jk = - LkkVltk = -- ~ DklVCl,  (16) 
/=2 

where Dkl = Lkkl~kl are generalized diffusion coefficients. This expression differs from the form of generalized 

diffusion laws adopted in the thermodynamics of irreversible processes (which includes gradients of chemical 

potentials of all independent components of the system [3 ]) by the substantially simpler form of presentation of 

diffusion coefficients whose consequences have experimental substantiations [8 ]. One of these consequences is the 

simple diagonal Dkk and off-diagonal Dkl diffusion coefficients 

Dkk/l~kk = Dkl/l~kl = L k k ,  (17) 

which makes it possible to study effects of kinetic Lkk and thermodynamic btk! diffusion factors separately [8 ]. By 

using the condition according to which the flow Jk and thermodynamic force Xg vanish simultaneously, one can 

obtain the relationship 

K 
DklVCl = 0 ,  (18) 

1=2 

explaining the phenomenon of the "upward" diffusion (Vc k > 0 w h e n  VCl~ k < 0) and alleviating the finding of 
hardly measurable off-diagonal diffusion coefficients [8 ]. In the case of nonisothermal diffusion in a system in the 

state of mechanical equilibrium (Vp = 0), expression (15) makes it possible to describe the stationary Soret and 

Dufure effects by presenting them as a consequence of the mutual cancellation of the Xkd and Xkt components [7 ]. 

The fact that the entropy or the density of the substance in free space fundamentally differs from those in a 
membrane is evidenced, in particular, by the disappearance of the Knudsen effect with increasing capillary 
diameter [2, 3 ]. 
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By passing in (15) to bulk flow Jv -- VkJk and by dividing X k by v k to retain the dimensionality of the product of 

Jv and X v = X k / v k ,  one can obtain the generalized Darcy filtration law [9 ] 

Jv = - Dv [Vp + (S*k/V*k) V T  + Qtkk/Vk) Vck  l ,  (19) 

where Dv = LkkV~ is the filtration coefficient. 

For systems containing charged components (conductors, electrolyte solutions, etc.), the chemical 

potentials/~k, as is well known, transform into the electrochemical potential/u* k = l~k + ek~o, where e k is the charge 

of a mole of the k-th component and ~o is the electromotive potential of the region. Accordingly, the additional 

component Xke = ekV 7, appears in the expression for the driving force of transfer of the k-th component, which 

makes it possible to obtain, based on (15), a generalized Ohm's law for electrolytes upon passing to the electric 

current Je = YkekJk and by dividing the force Xk by e k. In particular, when free electrons are the single charge- 
carrying component, the generalized Ohm's law assumes the form [9 ]: 

Je = - a [V~o + (sk/ek)  V T  + (vk/ek)  Vp  + (pkk/e/ , )  Vck], (20) 

where ~ = Lkk e2 is the electric conductivity of a membrane; ek, s k, v k, lUkk, and c k are parameters of the electron 
gas. This equation makes it possible to describe thermoelectric and  eleetrokinet ic  phenomena, in particular, to find 

expressions for stationary Peltier, Zeebeck, Reus, and Kwincke effects [9 ]. In a more general case when a conductor 

is placed into the magnetic field B, the magnetic component of the Lorentz force F L is added to the resulting force, 

which results in an anisotropy of electric conductivity and induces the whole spectrum of thermomagnetic effects 
(the Tomson, Rigi-Leduke, Ettinshausen-Nernst,  and other effects). These effects can also be explained in terms 

of superposition and mutual compensation of components of the resulting force [9 ]. 

In a similar manner, one can find numerous superposition effects in continuous (valve) systems separated 

by an immovable semipenetrable membrane. Under conditions of V = const typical for these systems, the driving 

force of transfer of the k-th substance is determined by a drop in the osmotic potential X k -- -A~p~ s, so that the 

equation of transfer of this substance assumes the form [9 ] 

os �9 (21) 
Jk = -- LkkAg'k = -- Lkk Z l~klACl + s k A T  + VkAP 

l=2 

One of the components of this force, Xkcon = -Zk l~k l  Ac  l, is responsible for the conventional osmosis, the 

other one, Xkt = --s*kAT, is responsible for the thermal osmosis, and the third one, Xkr = --vkAp, is responsible for 

the reverse osmosis effect and development of the osmotic pressure. Mutual compensation of these forces makes it 

possible to immediately find analytical expressions for a group of so-called t he rmomechan ica l  effects (the 

Feddersen, Knudsen, Allen-Johns, and Daunt-Mendelson effects [9 ]). 

Finding the resulting force from the uniqueness conditions made it possible to propose an alternative 

method for investigation of irreversible processes [6], based on which we managed to obtain in [9] the  

overwhelming majority of superposition effects known in the thermodynamics of irreversible processes. The method 

does not require writing cumbersome entropy balance equations and does not need applying the Onsager-Kasimir  
reciprocity relationships. The practical significance of this method consists, first of all, in the possibility of finding 

stationary superposition effects in nonlinear systems where Onsager's reciprocity relationships break down. Indeed, 

in the stationary state (Xi = 0) resulting from the mutual compensation of the components Xij of the force Xi, the 

character of dependences of the coefficients Lii (X i) o n  these forces in Eq. (5), e.g., the degree of their nonlinearity, 

is already of no significance. 
On the other hand, application of the alternative form of the phenomenological laws leads to further 

reduction in the number of kinetic coefficients necessary for their formulation. This reduction is achieved as a 

result of additional relationships between diagonal and off-diagonal phenomenological coefficients which follow 

from (5) upon moving Lii(Xi)  into the sum and comparing corresponding terms of the expression obtained with 

those from (1) 

753 



Lij = Zi  i (Xi )  X i j / X j  " (22) 

Expressions (17) are an example of these relationships. Since for n independent flows the number of 

relationships (22) equals n(n - 1), which is twice as large compared to the number of reciprocity relationships, 
Eqs. (5) make it possible to fu r the r  reduce the n u m b e r  of kinetic coeff ic ients  from n(n + 1) /2 ,  as in 
thermodynamics of irreversible processes, to n [10]. In addition, this approach can constitute the basis for the 

novel method of finding nondescript thermodynamic quantities such as/~kl, s~, etc. by measuring the corresponding 
superposition effects [ 10 ]. At the same time, it becomes possible to express the effects specified exclusively in terms 
of thermodynamic variables and find n(n - 1)/2 additional relationships between them. The Videman-Franz law 
is an example of these relationships [10]. All this emphasizes the heuristic value of finding the above-proposed 
alternative form of transfer laws. 

N O T A T I O N  

u, h, specific internal energy and enthalpy of the system, J/kg; X i, Xi, scalar and vector thermodynamic 

force of the i-th process; Ji, Ji,scalar and vector flows; 6Q, 6W, elementary amounts of heat and work, J; q*, w*, 
heat and work of transfer of a mole of the k-th substance, J/mole;  T, p, absolute temperature (K) and pressure, 
Pa; V, v, total (m 3) and specific (m3/kg) volumes of the system; S, s, complete (J/K) and specific ( J / (kg .K))  

entropies; v~, s k, partial molar volume (m3/mole) and molar entropy (J/ (mole - K) ) of the k-th component; ~ ,  s~, 
volume and entropy virtually introduced to the system by a mole of the k-th component;/~k, c~, chemical potential 
of a mole of the k-th component (J/mole) and its molar fraction (mole/mole); ~ ,  ~0~ s, diffusional and osmotic 
potentials of a mole of the k-th substance, J/mole; ~o, electric potential, V; a s, local entropy production rate, 
(W/(m3-K)); E, B, electric (V/m) and magnetic (A/m) fields. 
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